Тормоз прогресса
Тормоз прогресса
Тормозные системы
Тормозные системы
|
Среди автовладельцев много тех, кого не устраивает мощность мотора, топливная экономичность или комфорт подвески, а вот к тормозам претензии редки – работают и ладно. И все же находятся энтузиасты, дорабатывающие и тормоза: увеличенные диски, большие суппорта. Чего они хотят добиться? И вообще, в чем разница и на что влияет та или иная конструкция тормозов?
Текст: Карелов Олег.
Как ни странно на первый взгляд, но устройство и геометрические параметры тормозов почти не влияют на тормозной путь. Действительно, ведь замедление определяется сцеплением с дорогой, а от тормозов требуется лишь способность развить усилие, достаточное для блокировки колеса, чтобы замедление было на грани скольжения. А на это способны даже древние автомобили с барабанными тормозами.
Впрочем, всё это справедливо лишь до тех пор, пока температура тормозов держится в рамках допустимого. А выйдет ли она за эти рамки или нет, зависит от энергоемкости тормозов, то есть от их способности поглощать и рассеивать тепло, в которое в процессе трения переходит кинетическая энергия автомобиля. Если энергоемкости недостаточно, то температура тормозного диска или барабана начинает сильно расти, а коэффициент трения наоборот падать (для чугуна или стали, из которых изготовлены тормоза большинства машин, характерна именно такая зависимость). Соответственно, по мере нагрева на педаль тормоза придется давить все сильнее и сильнее, пока, в конце концов, усилий уже перестанет хватать, и тормозной путь начнет расти.
|
На мощных автомобилях один лишь тормозной диск может весить до 18кг, что составляет примерно две трети веса колеса (диск + покрышка). Разумеется, такой груз сказывается не только на плавности хода, но и на динамике.
|
Знакомая ситуация? Скорее всего, нет – подобные проявления в условиях обычной езды свидетельствуют об ошибках в проектировании тормозной системы, а потому редки. Но стоит выехать на гоночную трассу, как начинают сдаваться даже мощные с виду тормоза – именно здесь и проявляется разница.
Говоря о влиянии тормозов на характеристики автомобиля, нельзя не отметить и такой важный аспект, как неподрессоренные массы, которые во многом определяются именно весом тормозных механизмов. Об этом последнее время мало кто вспоминает, но мощные тормоза почти всегда оказываются еще и очень тяжелыми, из-за чего страдает плавность хода. Так что запас энергоемкости тормозов, выражающийся, как правило, в больших по размеру и массе тормозных дисках, не должен быть слишком большим – для неспортивной машины это просто неоправданно.
Типы тормозов
Итак, тормоза автомобилей бывают двух типов: барабанные и дисковые.
Исторически первыми стали применяться барабанные тормоза, то есть такие, в которых полукруглые колодки изнутри распирают закрытый металлический цилиндр. В таком виде, лишь с небольшими изменениями, эти тормоза существуют уже более 100 лет. В чем же причина успеха?
Главное конструктивное преимущество барабанных тормозов – большая площадь поверхности колодок, которые прилегают к барабану почти на двух третях окружности. Отсюда, в частности, следует увеличенный ресурс самих колодок и отсутствие необходимости в высоком давлении в тормозной системе – некоторое время назад, примерно до 40-ых годов, это позволяло даже обходиться без усилителя тормозов. Сказывается здесь и эффект «самоусиления», когда под действием силы трения колодки слегка поворачиваются вокруг оси и еще сильнее прижимаются к вращающемуся барабану. Разумеется, сейчас эти хитрости уже неважны – усилитель тормозов давно стал неотъемлемой деталью, но вот большой ресурс колодок весьма кстати для недорогих машин. Именно поэтому барабанные тормоза до сих иногда применяются на задней оси, где в условиях постоянно летящей пыли из-под передних колес проявляется и еще одно их достоинство – лучшая защищенность от грязи, ускоряющей, как известно, износ тормозов.
Однако на передней оси, где загруженные в момент замедления колеса обладают наилучшим сцеплением с дорогой, а значит и тормозам приходится тяжелее всего, барабанные механизмы уже не встретишь. Причина – недостаточное охлаждение, поскольку внутренняя сторона барабана закрыта, и эффективно рассеивает тепло лишь внешняя часть. При этом компенсировать падение коэффициента трения повышением усилия прижима колодок можно лишь весьма ограниченно, ведь барабан имеет далеко не бесконечную прочность на разрыв.
|
Передние барабанные тормоза гоночного автомобиля Auto Union Typ C/D 1939 года. 6-литровый V16 мощностью 520 л.с. требовал очень выносливых тормозов.
|
Конечно, можно как-то пытаться найти выход. Вспоминаются, например, тормоза гоночных болидов 40-ых годов – огромные барабаны размером чуть ли не с колесо, вентиляционные отверстия с одной стороны и оребрение с другой. Сколько же они весили… Чтобы как-то уменьшить неподрессоренные массы инженеры даже пытались крепить барабаны внутри кузова, передавая тормозной момент через приводные валы. Сейчас, конечно, такого уже не встретишь – вес уменьшают, отливая барабан из сплава алюминия и запрессовывая в него чугунное кольцо, к которому прилегают колодки.
С дисковыми тормозами подобных проблем на порядок меньше: диск ничем не прикрыт, охлаждаемая площадь большая. Дополнительно, для лучшего охлаждения, диски делаются не сплошными, а вентилируемыми – фактически сдвоенными со специальными воздушными каналами посередине, играющими роль центробежного вентилятора. Перегреть такие тормоза – уже непростое дело. К тому же здесь практически нет проблем, связанных с прочностью, как в случае с барабанном, - давление колодок на диск почти не ограничено.
Однако есть и свои трудности, например, возможный перегрев тормозной жидкости. Небольшие по площади колодки сильно греются, и это тепло активно передается жидкости – если она закипит, давление в магистрали упадет, и педаль тормоза просто «провалится» без какого-либо эффекта. И хотя с современными жидкостями с температурой кипения более 250 оС такой сценарий уже маловероятен, при проектировании очень мощных автомобилей все же необходимо учитывать и это. Решение находят в увеличении размера колодок – иногда они обхватывают едва ли не треть диска! При этом для равномерного распределения прижимного усилия приходится применять и массивные многопоршневые суппорты.
По той же причине – малые размеры колодок - дисковые тормоза чаще барабанных нуждаются в смене колодок, а для работы им необходим мощный усилитель, развивающий высокое давление в тормозной магистрали. Впрочем, это разумная плата за эффективность и высокую активную безопасность.
Материалы
До сих пор мы исходили из того, что диски тормозов изготовлены из чугуна или стали. Но почему именно из них?
Оказывается, к материалу диска предъявляется много требований. Кроме очевидной прочности и высокого коэффициента трения это еще и стабильность характеристик при нагреве, высокая теплопроводность, большая теплоемкость, стойкость к тепловому удару вследствие быстрого и сильного нагрева, а так же низкая способность к адгезии, дабы пары трения не прилипали друг к другу. Среди металлов этим требованиям в некоторой степени отвечают отдельные сорта стали и чугуна. И все же падение коэффициента трения по мере нагрева и склонность к короблению ограничивают температуру таких тормозов на уровне 500оС.
|
Карбоновые тормоза болида Формулы-1. Несмотря на небольшой размер (диаметр колесных дисков в формуле всего 13 дюймов), эти тормоза обладают чудовищной выносливостью, замедляя автомобиль с 300 км/ч с перегрузкой более 5g! Карбоновый кожух с внутренней стороны – часть воздухозаборника, охлаждающего диск и суппорт.
|
Есть и более стойкие материалы. Например, керамические диски способны выдержать нагрев едва ли не до 1000оС, почти не снижая при этом коэффициент трения. А уж если вспомнить, что они в два раза легче стальных, не склонны к деформации при резкой смене температур и обладают ресурсом, исчисляющимся сотнями тысяч километров, то в перспективе этой технологии почти не сомневаешься. Но, увы, всё предопределила их огромная стоимость – в среднем разница с обычными тормозами составляет несколько тысяч евро! При такой цене керамические диски остаются уделом лишь избранных суперкаров, тем более что почувствовать преимущества таких тормозов можно лишь в гоночных условиях. Подтверждением тому служит проведенный недавно нами тест двух Porsche Panamera, где модель с керамическими дисками даже проиграла в замерах тормозного пути – всё решили более цепкие покрышки.
Нельзя не упомянуть и про карбоновые диски, получившие широкое распространение в автоспорте, особенно в Формуле-1. Их главные преимущества над керамическими – примерно в пять раз меньший вес, рост(!) коэффициента трения по мере нагрева и чуть большая предельная температура – около 1200оС. Однако диапазон рабочих температур у них уже – от 300 до 650 градусов. Если нагрев недостаточен, то коэффициент трения мал, и торможение неэффективно, если же температура повышена, то карбон быстро окисляется и изнашивается. Именно поэтому гонщики Формулы-1 всегда греют тормоза перед стартом гонки, а сами тормоза оснащены специальными воздухозаборниками, захватывающими воздух для охлаждения со скоростью до 400 литров в секунду! Но и этого иногда оказывается недостаточно, и тогда на долгих интенсивных торможениях мы видим, как из колес болидов летит черная карбоновая пыль разрушающихся от перегрева дисков. В общем, исключительно гоночная технология, неприменимая в условиях обычных езды.
Мы же вернемся к реальности и поговорим о колодках – не менее важной детали тормозов. В отличие от дисков, фрикционный материал колодки испытывает не столь разносторонние механические нагрузки (в основном это нагрузка на сдвиг и сжатие), а потому требования к прочности не столь высоки и для изготовления можно применять различные композитные материалы. В частности, используются составы, включающие в себя около десятка различных компонентов, каждый из которых отвечает за какое-либо свойство. Например, оксиды металлов повышают коэффициент трения и износостойкость, а графит предотвращает «схватывание». В качестве же армирующего компонента, основы, используют различные заменители асбеста (сам асбест ныне не применяется в связи с его канцерогенными свойствами). Все эти компоненты, взятые в определенной пропорции - в зависимости от требуемых характеристик - смешиваются с каким-либо связующим веществом (видом смолы или каучука), нагреваются и спрессовываются. На выходе – фрикционные накладки для колодок. В общем, в распоряжении инженеров есть масса рецептов и возможностей придания колодкам тех или иных свойств.
Заключение
Рост мощностей и всеобщее увлечение спортивностью привели к заметному прогрессу тормозов за последние 10-15 лет. Удивительно, но даже далекие от автоспорта автомобили способны выдержать продолжительную езду по гоночному треку – стойкость тормозов действительно достойна высших оценок. Конечно, бывают и исключения, но то единичные случаи, встречающиеся среди тяжелых кроссоверов и внедорожников большой мощности. Таким образом, можно с уверенностью сказать – в данной области инженеры уже добились максимума.
А что же дальше? По-видимому, в дальнейшем мы будем наблюдать обратное движение - тенденцию к уменьшению размеров тормозных механизмов. При этом снижение их энергоемкости будет компенсироваться ростом эффективности электрических тормозов, превращающих кинетическую энергию не в бесполезное тепло, а в электрический заряд аккумуляторов. Нечто подобное мы уже встречаем на гибридных автомобилях – так называемое рекуперативное торможение – но пока электромоторы не слишком мощны, а аккумуляторы не способны воспринимать длительный заряд большим током, чтобы такое торможение было эффективным – замедление еще невелико. Но это лишь дело времени.
29.12.2010
|